3.1.23 \(\int x^3 \cos ^4(a+b x) \, dx\) [23]

3.1.23.1 Optimal result
3.1.23.2 Mathematica [A] (verified)
3.1.23.3 Rubi [A] (verified)
3.1.23.4 Maple [A] (verified)
3.1.23.5 Fricas [A] (verification not implemented)
3.1.23.6 Sympy [A] (verification not implemented)
3.1.23.7 Maxima [A] (verification not implemented)
3.1.23.8 Giac [A] (verification not implemented)
3.1.23.9 Mupad [B] (verification not implemented)

3.1.23.1 Optimal result

Integrand size = 12, antiderivative size = 172 \[ \int x^3 \cos ^4(a+b x) \, dx=-\frac {45 x^2}{128 b^2}+\frac {3 x^4}{32}-\frac {45 \cos ^2(a+b x)}{128 b^4}+\frac {9 x^2 \cos ^2(a+b x)}{16 b^2}-\frac {3 \cos ^4(a+b x)}{128 b^4}+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}-\frac {45 x \cos (a+b x) \sin (a+b x)}{64 b^3}+\frac {3 x^3 \cos (a+b x) \sin (a+b x)}{8 b}-\frac {3 x \cos ^3(a+b x) \sin (a+b x)}{32 b^3}+\frac {x^3 \cos ^3(a+b x) \sin (a+b x)}{4 b} \]

output
-45/128*x^2/b^2+3/32*x^4-45/128*cos(b*x+a)^2/b^4+9/16*x^2*cos(b*x+a)^2/b^2 
-3/128*cos(b*x+a)^4/b^4+3/16*x^2*cos(b*x+a)^4/b^2-45/64*x*cos(b*x+a)*sin(b 
*x+a)/b^3+3/8*x^3*cos(b*x+a)*sin(b*x+a)/b-3/32*x*cos(b*x+a)^3*sin(b*x+a)/b 
^3+1/4*x^3*cos(b*x+a)^3*sin(b*x+a)/b
 
3.1.23.2 Mathematica [A] (verified)

Time = 0.46 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.58 \[ \int x^3 \cos ^4(a+b x) \, dx=\frac {192 \left (-1+2 b^2 x^2\right ) \cos (2 (a+b x))+3 \left (-1+8 b^2 x^2\right ) \cos (4 (a+b x))+4 b x \left (24 b^3 x^3+32 \left (-3+2 b^2 x^2\right ) \sin (2 (a+b x))+\left (-3+8 b^2 x^2\right ) \sin (4 (a+b x))\right )}{1024 b^4} \]

input
Integrate[x^3*Cos[a + b*x]^4,x]
 
output
(192*(-1 + 2*b^2*x^2)*Cos[2*(a + b*x)] + 3*(-1 + 8*b^2*x^2)*Cos[4*(a + b*x 
)] + 4*b*x*(24*b^3*x^3 + 32*(-3 + 2*b^2*x^2)*Sin[2*(a + b*x)] + (-3 + 8*b^ 
2*x^2)*Sin[4*(a + b*x)]))/(1024*b^4)
 
3.1.23.3 Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.38, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.000, Rules used = {3042, 3792, 3042, 3791, 3042, 3791, 15, 3792, 15, 3042, 3791, 15}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^3 \cos ^4(a+b x) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int x^3 \sin \left (a+b x+\frac {\pi }{2}\right )^4dx\)

\(\Big \downarrow \) 3792

\(\displaystyle -\frac {3 \int x \cos ^4(a+b x)dx}{8 b^2}+\frac {3}{4} \int x^3 \cos ^2(a+b x)dx+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 \int x \sin \left (a+b x+\frac {\pi }{2}\right )^4dx}{8 b^2}+\frac {3}{4} \int x^3 \sin \left (a+b x+\frac {\pi }{2}\right )^2dx+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

\(\Big \downarrow \) 3791

\(\displaystyle -\frac {3 \left (\frac {3}{4} \int x \cos ^2(a+b x)dx+\frac {\cos ^4(a+b x)}{16 b^2}+\frac {x \sin (a+b x) \cos ^3(a+b x)}{4 b}\right )}{8 b^2}+\frac {3}{4} \int x^3 \sin \left (a+b x+\frac {\pi }{2}\right )^2dx+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {3 \left (\frac {3}{4} \int x \sin \left (a+b x+\frac {\pi }{2}\right )^2dx+\frac {\cos ^4(a+b x)}{16 b^2}+\frac {x \sin (a+b x) \cos ^3(a+b x)}{4 b}\right )}{8 b^2}+\frac {3}{4} \int x^3 \sin \left (a+b x+\frac {\pi }{2}\right )^2dx+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

\(\Big \downarrow \) 3791

\(\displaystyle -\frac {3 \left (\frac {3}{4} \left (\frac {\int xdx}{2}+\frac {\cos ^2(a+b x)}{4 b^2}+\frac {x \sin (a+b x) \cos (a+b x)}{2 b}\right )+\frac {\cos ^4(a+b x)}{16 b^2}+\frac {x \sin (a+b x) \cos ^3(a+b x)}{4 b}\right )}{8 b^2}+\frac {3}{4} \int x^3 \sin \left (a+b x+\frac {\pi }{2}\right )^2dx+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {3}{4} \int x^3 \sin \left (a+b x+\frac {\pi }{2}\right )^2dx+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}-\frac {3 \left (\frac {3}{4} \left (\frac {\cos ^2(a+b x)}{4 b^2}+\frac {x \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^2}{4}\right )+\frac {\cos ^4(a+b x)}{16 b^2}+\frac {x \sin (a+b x) \cos ^3(a+b x)}{4 b}\right )}{8 b^2}+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

\(\Big \downarrow \) 3792

\(\displaystyle \frac {3}{4} \left (-\frac {3 \int x \cos ^2(a+b x)dx}{2 b^2}+\frac {\int x^3dx}{2}+\frac {3 x^2 \cos ^2(a+b x)}{4 b^2}+\frac {x^3 \sin (a+b x) \cos (a+b x)}{2 b}\right )+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}-\frac {3 \left (\frac {3}{4} \left (\frac {\cos ^2(a+b x)}{4 b^2}+\frac {x \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^2}{4}\right )+\frac {\cos ^4(a+b x)}{16 b^2}+\frac {x \sin (a+b x) \cos ^3(a+b x)}{4 b}\right )}{8 b^2}+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {3}{4} \left (-\frac {3 \int x \cos ^2(a+b x)dx}{2 b^2}+\frac {3 x^2 \cos ^2(a+b x)}{4 b^2}+\frac {x^3 \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^4}{8}\right )+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}-\frac {3 \left (\frac {3}{4} \left (\frac {\cos ^2(a+b x)}{4 b^2}+\frac {x \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^2}{4}\right )+\frac {\cos ^4(a+b x)}{16 b^2}+\frac {x \sin (a+b x) \cos ^3(a+b x)}{4 b}\right )}{8 b^2}+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {3}{4} \left (-\frac {3 \int x \sin \left (a+b x+\frac {\pi }{2}\right )^2dx}{2 b^2}+\frac {3 x^2 \cos ^2(a+b x)}{4 b^2}+\frac {x^3 \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^4}{8}\right )+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}-\frac {3 \left (\frac {3}{4} \left (\frac {\cos ^2(a+b x)}{4 b^2}+\frac {x \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^2}{4}\right )+\frac {\cos ^4(a+b x)}{16 b^2}+\frac {x \sin (a+b x) \cos ^3(a+b x)}{4 b}\right )}{8 b^2}+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

\(\Big \downarrow \) 3791

\(\displaystyle \frac {3}{4} \left (-\frac {3 \left (\frac {\int xdx}{2}+\frac {\cos ^2(a+b x)}{4 b^2}+\frac {x \sin (a+b x) \cos (a+b x)}{2 b}\right )}{2 b^2}+\frac {3 x^2 \cos ^2(a+b x)}{4 b^2}+\frac {x^3 \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^4}{8}\right )+\frac {3 x^2 \cos ^4(a+b x)}{16 b^2}-\frac {3 \left (\frac {3}{4} \left (\frac {\cos ^2(a+b x)}{4 b^2}+\frac {x \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^2}{4}\right )+\frac {\cos ^4(a+b x)}{16 b^2}+\frac {x \sin (a+b x) \cos ^3(a+b x)}{4 b}\right )}{8 b^2}+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {3 x^2 \cos ^4(a+b x)}{16 b^2}-\frac {3 \left (\frac {3}{4} \left (\frac {\cos ^2(a+b x)}{4 b^2}+\frac {x \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^2}{4}\right )+\frac {\cos ^4(a+b x)}{16 b^2}+\frac {x \sin (a+b x) \cos ^3(a+b x)}{4 b}\right )}{8 b^2}+\frac {3}{4} \left (\frac {3 x^2 \cos ^2(a+b x)}{4 b^2}-\frac {3 \left (\frac {\cos ^2(a+b x)}{4 b^2}+\frac {x \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^2}{4}\right )}{2 b^2}+\frac {x^3 \sin (a+b x) \cos (a+b x)}{2 b}+\frac {x^4}{8}\right )+\frac {x^3 \sin (a+b x) \cos ^3(a+b x)}{4 b}\)

input
Int[x^3*Cos[a + b*x]^4,x]
 
output
(3*x^2*Cos[a + b*x]^4)/(16*b^2) + (x^3*Cos[a + b*x]^3*Sin[a + b*x])/(4*b) 
- (3*(Cos[a + b*x]^4/(16*b^2) + (x*Cos[a + b*x]^3*Sin[a + b*x])/(4*b) + (3 
*(x^2/4 + Cos[a + b*x]^2/(4*b^2) + (x*Cos[a + b*x]*Sin[a + b*x])/(2*b)))/4 
))/(8*b^2) + (3*(x^4/8 + (3*x^2*Cos[a + b*x]^2)/(4*b^2) + (x^3*Cos[a + b*x 
]*Sin[a + b*x])/(2*b) - (3*(x^2/4 + Cos[a + b*x]^2/(4*b^2) + (x*Cos[a + b* 
x]*Sin[a + b*x])/(2*b)))/(2*b^2)))/4
 

3.1.23.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3791
Int[((c_.) + (d_.)*(x_))*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> 
 Simp[d*((b*Sin[e + f*x])^n/(f^2*n^2)), x] + (-Simp[b*(c + d*x)*Cos[e + f*x 
]*((b*Sin[e + f*x])^(n - 1)/(f*n)), x] + Simp[b^2*((n - 1)/n)   Int[(c + d* 
x)*(b*Sin[e + f*x])^(n - 2), x], x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 
 1]
 

rule 3792
Int[((c_.) + (d_.)*(x_))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbo 
l] :> Simp[d*m*(c + d*x)^(m - 1)*((b*Sin[e + f*x])^n/(f^2*n^2)), x] + (-Sim 
p[b*(c + d*x)^m*Cos[e + f*x]*((b*Sin[e + f*x])^(n - 1)/(f*n)), x] + Simp[b^ 
2*((n - 1)/n)   Int[(c + d*x)^m*(b*Sin[e + f*x])^(n - 2), x], x] - Simp[d^2 
*m*((m - 1)/(f^2*n^2))   Int[(c + d*x)^(m - 2)*(b*Sin[e + f*x])^n, x], x]) 
/; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && GtQ[m, 1]
 
3.1.23.4 Maple [A] (verified)

Time = 1.69 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.59

method result size
parallelrisch \(\frac {\left (384 x^{2} b^{2}-192\right ) \cos \left (2 b x +2 a \right )+\left (24 x^{2} b^{2}-3\right ) \cos \left (4 b x +4 a \right )+\left (256 x^{3} b^{3}-384 b x \right ) \sin \left (2 b x +2 a \right )+\left (32 x^{3} b^{3}-12 b x \right ) \sin \left (4 b x +4 a \right )+96 x^{4} b^{4}+195}{1024 b^{4}}\) \(102\)
risch \(\frac {3 x^{4}}{32}+\frac {3 \left (8 x^{2} b^{2}-1\right ) \cos \left (4 b x +4 a \right )}{1024 b^{4}}+\frac {x \left (8 x^{2} b^{2}-3\right ) \sin \left (4 b x +4 a \right )}{256 b^{3}}+\frac {3 \left (2 x^{2} b^{2}-1\right ) \cos \left (2 b x +2 a \right )}{16 b^{4}}+\frac {x \left (2 x^{2} b^{2}-3\right ) \sin \left (2 b x +2 a \right )}{8 b^{3}}\) \(105\)
derivativedivides \(\frac {-a^{3} \left (\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{4}+\frac {3 b x}{8}+\frac {3 a}{8}\right )+3 a^{2} \left (\left (b x +a \right ) \left (\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{4}+\frac {3 b x}{8}+\frac {3 a}{8}\right )-\frac {3 \left (b x +a \right )^{2}}{16}+\frac {{\left (2 \left (\cos ^{2}\left (b x +a \right )\right )+3\right )}^{2}}{64}\right )-3 a \left (\left (b x +a \right )^{2} \left (\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{4}+\frac {3 b x}{8}+\frac {3 a}{8}\right )+\frac {\left (b x +a \right ) \left (\cos ^{4}\left (b x +a \right )\right )}{8}-\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{32}-\frac {15 b x}{64}-\frac {15 a}{64}+\frac {3 \left (b x +a \right ) \left (\cos ^{2}\left (b x +a \right )\right )}{8}-\frac {3 \cos \left (b x +a \right ) \sin \left (b x +a \right )}{16}-\frac {\left (b x +a \right )^{3}}{4}\right )+\left (b x +a \right )^{3} \left (\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{4}+\frac {3 b x}{8}+\frac {3 a}{8}\right )+\frac {3 \left (b x +a \right )^{2} \left (\cos ^{4}\left (b x +a \right )\right )}{16}-\frac {3 \left (b x +a \right ) \left (\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{4}+\frac {3 b x}{8}+\frac {3 a}{8}\right )}{8}+\frac {45 \left (b x +a \right )^{2}}{128}-\frac {3 {\left (2 \left (\cos ^{2}\left (b x +a \right )\right )+3\right )}^{2}}{512}+\frac {9 \left (b x +a \right )^{2} \left (\cos ^{2}\left (b x +a \right )\right )}{16}-\frac {9 \left (b x +a \right ) \left (\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{2}+\frac {b x}{2}+\frac {a}{2}\right )}{8}+\frac {9 \left (\sin ^{2}\left (b x +a \right )\right )}{32}-\frac {9 \left (b x +a \right )^{4}}{32}}{b^{4}}\) \(432\)
default \(\frac {-a^{3} \left (\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{4}+\frac {3 b x}{8}+\frac {3 a}{8}\right )+3 a^{2} \left (\left (b x +a \right ) \left (\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{4}+\frac {3 b x}{8}+\frac {3 a}{8}\right )-\frac {3 \left (b x +a \right )^{2}}{16}+\frac {{\left (2 \left (\cos ^{2}\left (b x +a \right )\right )+3\right )}^{2}}{64}\right )-3 a \left (\left (b x +a \right )^{2} \left (\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{4}+\frac {3 b x}{8}+\frac {3 a}{8}\right )+\frac {\left (b x +a \right ) \left (\cos ^{4}\left (b x +a \right )\right )}{8}-\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{32}-\frac {15 b x}{64}-\frac {15 a}{64}+\frac {3 \left (b x +a \right ) \left (\cos ^{2}\left (b x +a \right )\right )}{8}-\frac {3 \cos \left (b x +a \right ) \sin \left (b x +a \right )}{16}-\frac {\left (b x +a \right )^{3}}{4}\right )+\left (b x +a \right )^{3} \left (\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{4}+\frac {3 b x}{8}+\frac {3 a}{8}\right )+\frac {3 \left (b x +a \right )^{2} \left (\cos ^{4}\left (b x +a \right )\right )}{16}-\frac {3 \left (b x +a \right ) \left (\frac {\left (\cos ^{3}\left (b x +a \right )+\frac {3 \cos \left (b x +a \right )}{2}\right ) \sin \left (b x +a \right )}{4}+\frac {3 b x}{8}+\frac {3 a}{8}\right )}{8}+\frac {45 \left (b x +a \right )^{2}}{128}-\frac {3 {\left (2 \left (\cos ^{2}\left (b x +a \right )\right )+3\right )}^{2}}{512}+\frac {9 \left (b x +a \right )^{2} \left (\cos ^{2}\left (b x +a \right )\right )}{16}-\frac {9 \left (b x +a \right ) \left (\frac {\cos \left (b x +a \right ) \sin \left (b x +a \right )}{2}+\frac {b x}{2}+\frac {a}{2}\right )}{8}+\frac {9 \left (\sin ^{2}\left (b x +a \right )\right )}{32}-\frac {9 \left (b x +a \right )^{4}}{32}}{b^{4}}\) \(432\)

input
int(x^3*cos(b*x+a)^4,x,method=_RETURNVERBOSE)
 
output
1/1024*((384*b^2*x^2-192)*cos(2*b*x+2*a)+(24*b^2*x^2-3)*cos(4*b*x+4*a)+(25 
6*b^3*x^3-384*b*x)*sin(2*b*x+2*a)+(32*b^3*x^3-12*b*x)*sin(4*b*x+4*a)+96*x^ 
4*b^4+195)/b^4
 
3.1.23.5 Fricas [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 115, normalized size of antiderivative = 0.67 \[ \int x^3 \cos ^4(a+b x) \, dx=\frac {12 \, b^{4} x^{4} + 3 \, {\left (8 \, b^{2} x^{2} - 1\right )} \cos \left (b x + a\right )^{4} - 45 \, b^{2} x^{2} + 9 \, {\left (8 \, b^{2} x^{2} - 5\right )} \cos \left (b x + a\right )^{2} + 2 \, {\left (2 \, {\left (8 \, b^{3} x^{3} - 3 \, b x\right )} \cos \left (b x + a\right )^{3} + 3 \, {\left (8 \, b^{3} x^{3} - 15 \, b x\right )} \cos \left (b x + a\right )\right )} \sin \left (b x + a\right )}{128 \, b^{4}} \]

input
integrate(x^3*cos(b*x+a)^4,x, algorithm="fricas")
 
output
1/128*(12*b^4*x^4 + 3*(8*b^2*x^2 - 1)*cos(b*x + a)^4 - 45*b^2*x^2 + 9*(8*b 
^2*x^2 - 5)*cos(b*x + a)^2 + 2*(2*(8*b^3*x^3 - 3*b*x)*cos(b*x + a)^3 + 3*( 
8*b^3*x^3 - 15*b*x)*cos(b*x + a))*sin(b*x + a))/b^4
 
3.1.23.6 Sympy [A] (verification not implemented)

Time = 0.60 (sec) , antiderivative size = 253, normalized size of antiderivative = 1.47 \[ \int x^3 \cos ^4(a+b x) \, dx=\begin {cases} \frac {3 x^{4} \sin ^{4}{\left (a + b x \right )}}{32} + \frac {3 x^{4} \sin ^{2}{\left (a + b x \right )} \cos ^{2}{\left (a + b x \right )}}{16} + \frac {3 x^{4} \cos ^{4}{\left (a + b x \right )}}{32} + \frac {3 x^{3} \sin ^{3}{\left (a + b x \right )} \cos {\left (a + b x \right )}}{8 b} + \frac {5 x^{3} \sin {\left (a + b x \right )} \cos ^{3}{\left (a + b x \right )}}{8 b} - \frac {45 x^{2} \sin ^{4}{\left (a + b x \right )}}{128 b^{2}} - \frac {9 x^{2} \sin ^{2}{\left (a + b x \right )} \cos ^{2}{\left (a + b x \right )}}{64 b^{2}} + \frac {51 x^{2} \cos ^{4}{\left (a + b x \right )}}{128 b^{2}} - \frac {45 x \sin ^{3}{\left (a + b x \right )} \cos {\left (a + b x \right )}}{64 b^{3}} - \frac {51 x \sin {\left (a + b x \right )} \cos ^{3}{\left (a + b x \right )}}{64 b^{3}} + \frac {45 \sin ^{4}{\left (a + b x \right )}}{256 b^{4}} - \frac {51 \cos ^{4}{\left (a + b x \right )}}{256 b^{4}} & \text {for}\: b \neq 0 \\\frac {x^{4} \cos ^{4}{\left (a \right )}}{4} & \text {otherwise} \end {cases} \]

input
integrate(x**3*cos(b*x+a)**4,x)
 
output
Piecewise((3*x**4*sin(a + b*x)**4/32 + 3*x**4*sin(a + b*x)**2*cos(a + b*x) 
**2/16 + 3*x**4*cos(a + b*x)**4/32 + 3*x**3*sin(a + b*x)**3*cos(a + b*x)/( 
8*b) + 5*x**3*sin(a + b*x)*cos(a + b*x)**3/(8*b) - 45*x**2*sin(a + b*x)**4 
/(128*b**2) - 9*x**2*sin(a + b*x)**2*cos(a + b*x)**2/(64*b**2) + 51*x**2*c 
os(a + b*x)**4/(128*b**2) - 45*x*sin(a + b*x)**3*cos(a + b*x)/(64*b**3) - 
51*x*sin(a + b*x)*cos(a + b*x)**3/(64*b**3) + 45*sin(a + b*x)**4/(256*b**4 
) - 51*cos(a + b*x)**4/(256*b**4), Ne(b, 0)), (x**4*cos(a)**4/4, True))
 
3.1.23.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 303, normalized size of antiderivative = 1.76 \[ \int x^3 \cos ^4(a+b x) \, dx=\frac {96 \, {\left (b x + a\right )}^{4} - 32 \, {\left (12 \, b x + 12 \, a + \sin \left (4 \, b x + 4 \, a\right ) + 8 \, \sin \left (2 \, b x + 2 \, a\right )\right )} a^{3} + 24 \, {\left (24 \, {\left (b x + a\right )}^{2} + 4 \, {\left (b x + a\right )} \sin \left (4 \, b x + 4 \, a\right ) + 32 \, {\left (b x + a\right )} \sin \left (2 \, b x + 2 \, a\right ) + \cos \left (4 \, b x + 4 \, a\right ) + 16 \, \cos \left (2 \, b x + 2 \, a\right )\right )} a^{2} - 12 \, {\left (32 \, {\left (b x + a\right )}^{3} + 4 \, {\left (b x + a\right )} \cos \left (4 \, b x + 4 \, a\right ) + 64 \, {\left (b x + a\right )} \cos \left (2 \, b x + 2 \, a\right ) + {\left (8 \, {\left (b x + a\right )}^{2} - 1\right )} \sin \left (4 \, b x + 4 \, a\right ) + 32 \, {\left (2 \, {\left (b x + a\right )}^{2} - 1\right )} \sin \left (2 \, b x + 2 \, a\right )\right )} a + 3 \, {\left (8 \, {\left (b x + a\right )}^{2} - 1\right )} \cos \left (4 \, b x + 4 \, a\right ) + 192 \, {\left (2 \, {\left (b x + a\right )}^{2} - 1\right )} \cos \left (2 \, b x + 2 \, a\right ) + 4 \, {\left (8 \, {\left (b x + a\right )}^{3} - 3 \, b x - 3 \, a\right )} \sin \left (4 \, b x + 4 \, a\right ) + 128 \, {\left (2 \, {\left (b x + a\right )}^{3} - 3 \, b x - 3 \, a\right )} \sin \left (2 \, b x + 2 \, a\right )}{1024 \, b^{4}} \]

input
integrate(x^3*cos(b*x+a)^4,x, algorithm="maxima")
 
output
1/1024*(96*(b*x + a)^4 - 32*(12*b*x + 12*a + sin(4*b*x + 4*a) + 8*sin(2*b* 
x + 2*a))*a^3 + 24*(24*(b*x + a)^2 + 4*(b*x + a)*sin(4*b*x + 4*a) + 32*(b* 
x + a)*sin(2*b*x + 2*a) + cos(4*b*x + 4*a) + 16*cos(2*b*x + 2*a))*a^2 - 12 
*(32*(b*x + a)^3 + 4*(b*x + a)*cos(4*b*x + 4*a) + 64*(b*x + a)*cos(2*b*x + 
 2*a) + (8*(b*x + a)^2 - 1)*sin(4*b*x + 4*a) + 32*(2*(b*x + a)^2 - 1)*sin( 
2*b*x + 2*a))*a + 3*(8*(b*x + a)^2 - 1)*cos(4*b*x + 4*a) + 192*(2*(b*x + a 
)^2 - 1)*cos(2*b*x + 2*a) + 4*(8*(b*x + a)^3 - 3*b*x - 3*a)*sin(4*b*x + 4* 
a) + 128*(2*(b*x + a)^3 - 3*b*x - 3*a)*sin(2*b*x + 2*a))/b^4
 
3.1.23.8 Giac [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.63 \[ \int x^3 \cos ^4(a+b x) \, dx=\frac {3}{32} \, x^{4} + \frac {3 \, {\left (8 \, b^{2} x^{2} - 1\right )} \cos \left (4 \, b x + 4 \, a\right )}{1024 \, b^{4}} + \frac {3 \, {\left (2 \, b^{2} x^{2} - 1\right )} \cos \left (2 \, b x + 2 \, a\right )}{16 \, b^{4}} + \frac {{\left (8 \, b^{3} x^{3} - 3 \, b x\right )} \sin \left (4 \, b x + 4 \, a\right )}{256 \, b^{4}} + \frac {{\left (2 \, b^{3} x^{3} - 3 \, b x\right )} \sin \left (2 \, b x + 2 \, a\right )}{8 \, b^{4}} \]

input
integrate(x^3*cos(b*x+a)^4,x, algorithm="giac")
 
output
3/32*x^4 + 3/1024*(8*b^2*x^2 - 1)*cos(4*b*x + 4*a)/b^4 + 3/16*(2*b^2*x^2 - 
 1)*cos(2*b*x + 2*a)/b^4 + 1/256*(8*b^3*x^3 - 3*b*x)*sin(4*b*x + 4*a)/b^4 
+ 1/8*(2*b^3*x^3 - 3*b*x)*sin(2*b*x + 2*a)/b^4
 
3.1.23.9 Mupad [B] (verification not implemented)

Time = 0.91 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.80 \[ \int x^3 \cos ^4(a+b x) \, dx=\frac {\frac {3\,{\sin \left (2\,a+2\,b\,x\right )}^2}{512}-b^2\,\left (\frac {3\,x^2\,\left (2\,{\sin \left (2\,a+2\,b\,x\right )}^2-1\right )}{128}+\frac {3\,x^2\,\left (2\,{\sin \left (a+b\,x\right )}^2-1\right )}{8}\right )-b\,\left (\frac {3\,x\,\sin \left (2\,a+2\,b\,x\right )}{8}+\frac {3\,x\,\sin \left (4\,a+4\,b\,x\right )}{256}\right )+b^3\,\left (\frac {x^3\,\sin \left (2\,a+2\,b\,x\right )}{4}+\frac {x^3\,\sin \left (4\,a+4\,b\,x\right )}{32}\right )+\frac {3\,{\sin \left (a+b\,x\right )}^2}{8}}{b^4}+\frac {3\,x^4}{32} \]

input
int(x^3*cos(a + b*x)^4,x)
 
output
((3*sin(2*a + 2*b*x)^2)/512 - b^2*((3*x^2*(2*sin(2*a + 2*b*x)^2 - 1))/128 
+ (3*x^2*(2*sin(a + b*x)^2 - 1))/8) - b*((3*x*sin(2*a + 2*b*x))/8 + (3*x*s 
in(4*a + 4*b*x))/256) + b^3*((x^3*sin(2*a + 2*b*x))/4 + (x^3*sin(4*a + 4*b 
*x))/32) + (3*sin(a + b*x)^2)/8)/b^4 + (3*x^4)/32